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Abstract

In this paper we apply a model of ®nite viscoelasticity and propose an identi®cation technique to represent the
dynamic properties of polymers. The model is based on a multiplicative split of the deformation gradient into a
thermal and a mechanical part, the latter being decomposed further into elastic and viscous parts. In order to

formulate the constitutive equations we transfer the concept of discrete relaxation spectra to ®nite strains, specify
the free energy as a function of elastic strain tensors and evaluate the dissipation principle of thermodynamics in the
form of the Clausius±Duhem inequality. Then we investigate the dynamic moduli of a polyethylene melt under

harmonic shear deformations and determine the material parameters. To this end we linearise the constitutive model
and calculate the analytical solution of the evolution equations. In addition we formulate a second model which
represents the experimental data on the basis of a fairly small number of ®tting parameters. This so-called substitute

model is based on the fractional calculus and corresponds to a continuous relaxation spectrum. In order to identify
the material constants of the ®nite strain model we are looking for, we proceed as follows. We determine the
parameters of the substitute model, calculate the so-called cumulative relaxation spectrum and approximate it by
means of a series of step functions: the height of the steps corresponds to the sti�ness parameters of the ®nite strain

model and their locations to the inverse relaxation times. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

For the purpose of modelling static and dynamic mechanical properties of polymers when subjected
to small strains, the phenomenological theory of linear viscoelasticity is a very powerful and familiar
tool (cf Tobolsky, 1967; Gross, 1968; Findley et al., 1976; Ferry, 1980; Tschoegl, 1989 among others). If
the corresponding relaxation function G(t ) is completely monotonic, i.e. the condition (ÿ1)n dnG/dt nr0
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is satis®ed for any natural number n or, equivalently, the relaxation spectrum is non-negative, the
compatibility with the second law of thermodynamics is ensured (see, for example, Beris and Edwards,
1993 and literature citations therein). This is the case, for example, if the mathematical form of the
constitutive model is based on discretely or continuously distributed rheological elements, i.e. on linear
springs and dampers with positive sti�ness parameters and viscosities. If, for comparison, the model is
formulated purely mathematically on the basis of linear di�erential operators, i.e. a0s+a1 ds/dt+a2
d2s/dt 2+� � �=E+b1 dE/dt+b2 d2E/dt 2+� � �, it can happen that the thermodynamical compatibility is
violated under certain circumstances. Akyildiz et al. (1990) analysed such an example.

In addition to the classical rheological model approach, the fractional calculus, which was transferred
to linear viscoelasticity by Caputo and Mainardi (1971), can also be successfully applied to describe the
relaxation, creep or dynamic properties of polymeric materials over fairly large ranges in the time or the
frequency domain (see, for example, Koeller, 1984; Bagley and Torvik, 1986). If these models are
formulated on the basis of so-called fractional rheological elements (see Schiessel et al., 1995) they are
compatible with the second law of thermodynamics as well (see Lion, 1997a,b).

If the deformations are larger, for example, in the case of extrusion or injection moulding, linear
theories are no longer applicable to simulate the material properties in thermomechanical boundary
value problems. Many polymers have a vanishing equilibrium stress; they show pronounced relaxation
and creep e�ects and have an o�-zero storage modulus. Therefore, the concepts of linear or non-linear
viscous ¯uids are also invalid. We therefore intend to propose a thermodynamically consistent approach
capable of describing complicate viscoelastic behaviour. The deformations can be ®nite and both the
equilibrium stress and the low-frequency limit of the storage modulus can either be di�erent from zero
or not. In order to determine the material constants, we propose a method which is based on dynamic
shear tests under small strains.

2. Constitutive approach

The details of our constitutive approach are described in earlier papers (cf Lion, 1997a, 1998). In
order to separate physical phenomena of a di�erent nature we introduced multiple intermediate
con®gurations. The push-forward and pull-back transformations of the associated stress and strain
variables between the di�erent sets of con®gurations are carried out using the concept of dual variables
developed by Haupt and Tsakmakis (1989).

We begin with the multiplicative decomposition of the deformation gradient F into a stress-producing
mechanical part FM and a thermal part Fy as originally proposed by Lu and Pister (1975):

F � FMFy: �1�
Isotropic thermal expansion leads to Fy=j(y )1, where j describes the temperature dependence of the
mass density. In addition we de®ne the following set of mechanical stress and strain measures

EM � 1
2 �CM ÿ 1�, CM � FT

MFM, ÄTM � �det FM�Fÿ1M TFTÿ1
M , �2�

where EM is the mechanical Green strain tensor, CM the Cauchy±Green tensor, T the Cauchy stress and
TÄ M the mechanical second Piola±Kirchho� stress tensor. If we express the dissipation in the form of the
Clausius±Duhem inequality (see, for example, Haupt, 1992) in terms of these variables we obtain the
relation

rRyyG � ÿrRy _c� ÄTM � ÇEM � CM
ÄTM � Ly ÿ rRys_yÿ qR � Grad y

y det�Fy� r0, �3�
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Ly � ÇFyF
ÿ1
y , rRy �

rR
det�Fy� , �4�

which has to be satis®ed for arbitrary thermomechanical processes. In the above relations c is the free
energy per unit mass, s the speci®c entropy, y the thermodynamic temperature, qR the vector of heat
¯ux, and G the rate of entropy production. The quantities rRy and rR are the mass densities of the
unloaded con®guration at the temperatures y and y0. The vector Grady is the material temperature
gradient and a superscript dot denotes the material time derivative.

Formulating the constitutive model we assume that all dependent variables c, TÄ M and s are
functionals of the history of the mechanical Green strain tensor EM and the thermodynamic temperature
y:

c�t� � h
sr0
�EM�tÿ s�, y�tÿ s��, ÄTM�t� � H

sr0
�EM�tÿ s�, y�tÿ s��,

s�t� � k
sr0
�EM�tÿ s�, y�tÿ s��:

�5�

Motivated by the structure of rheological models with discrete relaxation spectra and further physical
arguments (see, for example, Lubliner, 1985; Haupt, 1993; Lion, 1997a, 1998) we decompose the free
energy c and the stress TÄ M as follows:

c � ceq�EM, y� �
XN
k�1

covk�EEEevk, y� � z�y�, ÄTM � ÄTeq �
XN
k�1

ÄTovk: �6�

The equilibrium parts ceq and TÄ eq describe the equilibrium properties of the material and depend on the
total mechanical deformation EM and the temperature, whereas z(y ) is related to the temperature
dependence of the speci®c heat capacity. The non-equilibrium part cov is the sum of energy functions of
the elastic strain tensors EEEevk de®ned by the following set of multiplicative decompositions:

FM � FevkFvk, EEEevk � 1
2�Cevk ÿ 1�, Cevk � FT

evkFevk, Cvk � FT
vkFvk: �7�

As a consequence of the dissipation inequality (3) and the concept of dual variables proposed by Haupt
and Tsakmakis (1989), the potential relations for the stresses and the evolution laws for the inelastic
deformations, acting on the thermomechanical intermediate con®guration introduced by (1), can be
written as

ÄTeq � rRy
@ceq

@EM
, ÄTovk � rRyF

ÿ1
vk

@covk

@EEEevk
FTÿ1
vk and ÇCvk � 4rRy

Zk�. . .�F
T
vk

�
Cevk

@covk

Cevk

�
Fvk: �8�

The potential relation for the speci®c entropy s has been omitted here. It is speci®ed in an earlier work
(cf Lion, 1998). The quantities Zk>0 are viscosity functions which may depend on the temperature, the
stress or other internal variables. These can be introduced, for example, to describe thixotropic e�ects
depending on the deformation process (cf Lion, 1998). If the material is incompressible with respect to
mechanical loads we have det(FM)=1 so that the Cauchy stress tensor T reads

T � ÿp1� Teq �
XN
k�1

Tovk, �9�

Teq � FM
ÄTeqFT

M and Tovk � FM
ÄTovkFT

M: �10�
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The pressure p is not determine constitutively but by the balance of momentum. Well-tested strain
energy functions for viscoelastic polymers and elastomers are given by modi®ed Mooney±Rivlin and
Neo±Hooke models

ceq �
y
y0
�c1�IM ÿ 3� � c2�IIM ÿ 3��, covk �

y
y0

mk� ÃCevk � 1ÿ 3�, ÃCevk � Cevk

det�Cevk�1=3
: �11�

The variables IM=tr(CM) and IIM=1/2(tr(CM)2ÿCM � CM) are the invariants of the mechanical
Cauchy±Green tensor CM and the parameters ck and mk are material constants.

3. Linearised model

In order to determine the material constants of the constitutive model it is expedient to carry out
dynamic tests in uniaxial tension, shear or compression. To this end it is common practice to apply a
time-independent pre-deformation g0 which is superimposed by small sinusoidal oscillations with an
angular frequency o and an amplitude Dg:

g�t� � g0 � Dg sin�ot�: �12�
In this case the mechanical deformation gradient can be written as FM=F0(1+h(t)) with F0=const and
kh(t )k<<1.1 As a consequence of this assumption the model can be linearised with respect to the
incremental displacement gradient h. If we introduce the de®nition B0=F0F

T
0 and the incremental strain

tensor e=1/2(h+hT) we obtain for the Cauchy stress tensor T the following set of linearised equations
(for more details, see Lion, 1998; Horz, 1994):

Teq � 2rRy
y
y0
�c1B0 ÿ c2Bÿ10 � c1�hB0 � B0h

T� � c2�Bÿ10 h� hTBÿ10 �� �13�

Tovk � 4mkrRy�eÿ evk�D, Çevk � nk�eÿ evk�D, nk � 4mkrRy
Zk�. . .� �14�

T � ÿp1� Teq �
XN
k�1

Tovk, TRM � T�1� h�ÿ11T�1ÿ h�: �15�

The superscript `D' denotes the deviatoric part of a tensor, the quantities evk are internal variables of
strain type, TRM is a linearised version of the ®rst Piola±Kirchho� stress tensor, related to the statically
pre-deformed con®guration. The parameters nk are inverse relaxation times or relaxation frequencies.
Obviously, this interpretation is only valid in the linearised model.

For the sake of simplicity, we omit the static pre-deformation F0 in the following considerations,
assume that all viscosities Zk are constant, and we apply a harmonic shear deformation g(t ). Thus, we
have g(t )=Dg sin(ot ), h(t )=g(t )ex
 ey, y=y0 and F0=1. Since the amplitude Dg is small, normal stress
e�ects can be disregarded and the stationary stress response can be written as

T�t� � t�t��ex 
 ey � ey 
 ex�, �16�

1 khk � ���������
h � hp

:
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t�t� � Dg�G 0�o� sin�ot� � G 00�o� cos�ot�� �17�
and

G 0�o� � 2rRy�c1 � c2� � 2rRy
XN
k�1

mko
2

n2k � o2
, G 00�o� � 2rRy

XN
k�1

mkonk
n2k � o2

: �18�

The two frequency-dependent functions G ' and G0 are the dynamic shear moduli of the linearised ®nite
strain model. They are similar to the corresponding expressions of linear viscoelastic models with
discrete relaxation spectra (see, for example, Tobolsky, 1967). In the following we employ these
expressions to determine the material parameters c1, c2, mk, Zk occurring in the constitutive model and
the number N of Maxwell elements. For incremental deformations of ®lled elastomers, loaded with ®nite
pre-deformations, i.e. F0$1, we recommend the interested reader to consult the work of Lion (1998).

In order to illustrate the physical meaning of the constitutive theory we investigate the mechanical
behaviour of a polyethylene melt at a temperature level of 473 K and determine the material constants.
To this end the dynamic moduli of shear have to be measured. Fig. 1 illustrates given experimental data
in a double logarithmic diagram. As we see, the data points of the storage and dissipation moduli can
be rather well approximated by straight lines. This behaviour corresponds to a power law. As a
consequence the fractional calculus can be successfully applied to describe the data by means of a fairly
simple functional relation.

4. Identi®cation of material parameters

The linearised constitutive equations (17) and (18) are analogous to those of linear viscoelasticity with
a discrete relaxation spectrum. In view of the experimental data points depicted in Fig. 1, the number N
of material parameters mk and Zk required to represent them is presumably quite large. Moreover, due to
the mathematical structure of the expressions (18) for the dynamic moduli, the problem of the
parameter identi®cation is strongly non-linear. However, we can avoid this dilemma: instead of
determining the parameters mk, Zk by means of a non-linear optimisation algorithm, a simpler procedure
is possible. In fact Fig. 1 suggests that only a few parameters (at the most four) is required to ®t the
experimental data into a good approximation. Therefore, we formulate an additional uniaxial model of
linear viscoelasticity, which corresponds to a power law and serves as a substitute model. If we calculate

Fig. 1. Dynamic moduli of polyethylene at y=473 K.
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the dynamic moduli of the substitute model analytically, we are able to compute a continuous relaxation
spectrum on the basis of a Stieltjes transformation. In the ®nal step we approximate this continuous
spectrum by the discrete spectrum of the linearised ®nite strain model.

4.1. Substitute model

Appropriate models to describe the power law-type frequency-dependence of the dynamic moduli of
polymeric media can be formulated on the basis of the fractional calculus (see, for example, Caputo and
Mainardi, 1971; Koeller, 1984; Bagley and Torvik, 1986). As usual, we de®ne the fractional derivative
daf/dt a of order 0< a<1 by the linear integral operator

daf

dta
� 1

G�1ÿ a�
�t
0

f 0�s�
�tÿ s�a ds, f �0� � 0, �19�

where the kernel function is a weakly singular power law and G(x ) the Eulerian Gamma function. A
simple way to formulate thermodynamically consistent constitutive laws based on (19) is to de®ne a so-
called fractional damping element (see Lion, 1997b). It can be used as an additional rheological element
to create more complex models. It assumes proportionality between the fractional derivative daE/dt a of
the strain E which acts on it and the corresponding stress s, i.e. daE/dt a=s/(Ez a). The constants E, z
and a are non-negative material parameters. In the limit case of a=1 the fractional element corresponds
to the linear Newtonian damper and for a=0 to Hookean elasticity.

In particular, the fractional generalisation of the standard linear solid can be obtained by replacing
the Newtonian damper by a fractional damping element as sketched in Fig. 2 (cf Schiessel et al., 1995):

t � teq � tov, teq � Cg, tov � E�gÿ gin�,
dagin

dta
� 1

Eza
tov �20�

dat
dta
� 1

za
t � �E� C �d

ag
dta
� 1

za
Cg: �21�

In the above equations teq is the equilibrium stress, C the corresponding sti�ness constant and tov the
rate-dependent overstress. Computing the fractional derivative of (20)3 and eliminating the variable gin
we obtain the representation in the form of (21).

The storage and dissipation moduli G ' and G ' belonging to this model are quite easy to work out.
For this purpose we apply the integral operator (19) and calculate the fractional derivative of the
complex harmonic function f(t )=Df eiotY(t )

daf

dta
� Df

G�1ÿ a�ta �
io

G�1ÿ a�
�t
0

eÿios

sa
dsDf eiot, �22�

Fig. 2. Model of fractional viscoelasticity.
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where i � �������ÿ1p
is the imaginary unit, Y(t )=0 if t R 0 and Y(t )=1 if t > 0. In the stationary case, i.e.

for large values of t, the upper limit of integration in (22) can be replaced by +1 and the ®rst term
vanishes, so that the right-hand-side becomes periodic with respect to time t:

da

dta
�Df eiotY�t�� � io

G�1ÿ a�
�1
0

eÿios

sa
dsDf eiot �) da

dta
�Df eiotY�t�� � �io�aDf eiot: �23�

As we see, the fractional derivative of the function f(t )=Df eiotY(t ) is proportional to f(t ) itself in the
stationary case. A relation similar to (23)2 holds for the Fourier transformation of the fractional
derivative (see Schiessel et al., 1995).

In the following consideration we assume t > 0 and stationary conditions, i.e. Y(t )=1, g(t )=Dg eiot

and t(t )=Dt eiot, where Dt is the complex stress amplitude. Inserting the harmonic deformation g(t ) in
combination with the stress t(t ) into (21), while bearing (23)2 in mind and rearranging the terms we
obtain the expression�

�io�a � 1

za

�
Dt eiot �

�
�E� C ��io�a � 1

za
C

�
Dg eiot �24a�

and ®nally

Dt � G ��io�Dg, G � � C� E�ioz�a
1� �ioz�a �24b�

for the stationary stress response. The quantity G�(io ) is the complex dynamic modulus whose real and
imaginary parts G '=Re(G�) and G0=Im(G�) read as follows:

G 0�o� � C� E��oz�2a � �oz�a cos�ap=2��
1� �oz�2a � 2�oz�a cos�ap=2� , G 00�o� � E�oz�a sin�ap=2�

1� �oz�2a � 2�oz�a cos�ap=2� : �25�

The four parameters C, E, a and z of this model were determined using a Monte Carlo identi®cation
technique (Bronstein and Semendjajew, 1997, p. 720 �.). In order to minimise the quadratic error norm
between the test data of log(G ') and log(G0) and the formulae (25), the parameters C, E, a and z were
varied statistically in given limits. The ®nal result of ®tting the analytical expressions (25) to the
experimental data of Fig. 1 is C = 8 Pa, E = 32,424 Pa, a=0.586 and z=7.7 � 10ÿ3 s. Since the
equilibrium modulus C of the fractional model is approximately zero we cannot go far wrong by
equating C to zero and concluding c1=c2=0 [see (18)].

In order to determine the parameters of the ®nite strain model we have to compute the relaxation
spectrum of the fractional model (21). To this end we follow Gross (1968) or Tschoegl (1989) and apply
the general relation between the complex modulus G� of a linear viscoelastic system and its spectrum
h(n ) as a function of the relaxation frequency n > 0. This spectrum is related to the relaxation function
G(t ) via

G�t� �
�1
0

h�n�eÿnt dn: �26�

Inserting the harmonic deformation process g(t )=Dg eiot into the linear functional relation

t�t� �
�t
ÿ1

G�tÿ s�g 0�s�ds, �27�

between stress and strain, taking (26) into consideration and altering the sequence of integration, we
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arrive at the formula we are looking for

G ��io�
io

�
�1
0

h�n�
n� io

dn: �28�

As we see, the function G�(io )/io is the Stieltjes transformation of the relaxation spectrum h(n ).
Following Gross (1968) or Tschoegl (1989) the inverse of the Stieltjes transformation of (28) can be
worked out using quite a simple limit transition. It reads as

h�n� � 1

2pi
lim E40

�
G ��ÿnÿ iE�
ÿnÿ iE

ÿ G ��ÿn� iE�
ÿn� iE

�
, �29�

where n > 0 and E > 0 is stipulated. In the context of our present task it is appropriate to express the
complex arguments ÿn2iE of (29) in the form of the complex exponential function

ÿn2iE �
��������������
E2 � n2

p
e2i�pÿarctan�E=n��, �30�

and to carry out the limit transition E4 0. As an intermediate result we obtain the general formula

h�n� � 1

2pi

�
G ��n eÿip�

n eÿip
ÿ G ��n e�ip�

n e�ip

�
, �31�

which can be utilised to compute the relaxation spectrum if the dynamic modulus is known. Taking the
modulus (24b)2 into account and bearing C = 0 in mind, the relaxation spectrum of the fractional
model (21) reads as

h�n� � E�nz�a sin�ap�
pn�1� �nz�2a � 2�nz�a cos�ap�� : �32�

Due to h(n ) > 0 the fractional model is compatible with the second law of thermodynamics as well (see,
for example, Beris and Edwards, 1993; Lion, 1997b).

In order to determine the material constants of the linearised ®nite strain model we are looking for,
we apply an extremely e�ective method which was devised by Backhaus (1997). To this end we de®ne
the so-called cumulative relaxation spectrum

H�n� �
�n

0

h�z�dz, �33�

which possesses the advantageous characteristic of being a monotonic function of its argument n. Due
to the simple mathematical form of (32) the integration can be carried out analytically:

H�n� � E

ap

 
arctan

� �nz�a � cos�ap�
sin�ap�

�
ÿ p

�
1

2
ÿ a

�!
: �34�

If the relaxation spectrum h(n ) has a more complex mathematical form, the integration can be carried
out using a numerical method.

4.2. Approximation of the cumulative relaxation spectrum

The technique we use to determine the real material constants mk and zk of the constitutive model
(13)±(15) consists of approximating the cumulative spectrum H(n ) of the substitute model by the
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cumulative spectrum Hlin(n ) of the uniaxial version (17) and (18) of the linearised model. In order to
explain the general method we integrate (28) by parts and express the complex modulus G�(io ) as a
linear functional of the cumulative spectrum H:

G ��io� �
�1
0

h�n� io
n� io

dn �
�
H�n�io
n� io

�1
0

�
�1
0

H�n� io

�n� io�2 dn �
�1
0

H�n� io

�n� io�2 dn: �35�

The relaxation spectrum, which can be attributed to the linearised ®nite strain model (17) and (18), is
given by a series of Diracean Delta functions. Therefore, the corresponding cumulative spectrum Hlin(n ),
calculated on the basis of (33) is given by a series of step functions:

Hlin�n� � 2rRy
XN
k�1

mkhnÿ nki �36�

with

hxi � 0 if x < 0 and hxi � 1 if xr0: �37�
The problem now is to determine the constants mk and nk as well as the number N of elements, so that
the function H(n ) of the substitute model (34) is represented by Hlin(n ) in a given domain of relaxation
frequencies nmin R n R nmax. In order to simplify the approximation procedure we prescribe the
numerical values of constants nk and take the following power law distribution:

nk � nmin

�nmax

nmin

��kÿ1�=�Nÿ1�
: �38�

To specify the numerical values of nmin, nmax, N and the parameters mk we proceed as follows: due to
(36) the function Hlin(n ) vanishes for 0 R n R nmin and is constant for nmax R n. In the intermediate
regions we de®ne the value of Hlin(n ) as the mean value 1/2(H(ni)+H(ni + 1)) with ni R n R ni + 1:

0Rn < n1: Hlin�n� � 0 �39a�

n1Rn < n2: Hlin�n� � 2rRym1: � 1
2�H�n1� �H�n2�� �39b�

niRn < ni�1: Hlin�n� � 2rRy
Xi
k�1

mk: �
1

2
�H�ni � �H�ni�1�� �39c�

nNRn: Hlin�n� � 2rRy
XN
k�1

mk: �
1

2
�H�nN� �H�nN�1��: �39d�

As a consequence, it is easy to calculate the numerical values of the sti�ness parameters mk and
viscosities Zk:

m1 �
H�n1� �H�n2�

4rRy
if k � 1 and mk �

H�nk�1� ÿH�nkÿ1�
4rRy

if k > 1, Zk �
4mkrRy

nk
: �40�

In order to represent the dynamic behaviour of the material in the frequency domain omin R o R omax
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we have to estimate the lower and upper limits nmin and nmax of relaxation frequencies as well as the
number N of Maxwell elements.

To this end we estimate the error F between the complex moduli G� and G �lin of the substitute model
and the linearised ®nite strain model:

F �j G ��io� ÿ G �lin�io� j�
�����
�1
0

�H�n� ÿHlin�n�� io

�n� io�2 dn

�����: �41�

By splitting the integral domain into three parts and applying the triangle inequality we arrive at

FR
�����
�nmin

0

�H�n� ÿHlin�n��io
�n� io�2 dn

������
�����
�nmax

nmin

�H�n� ÿHlin�n��io
�n� io�2 dn

������
�����
�1

nmax

�H�n� ÿHlin�n��io
�n� io�2 dn

�����
: � F1 � F2 � F3:

�42�

Since vio/(n+io )2v=o/(n 2+o 2) is valid and the cumulative spectrum Hlin(n ) of the linearised ®nite
strain model vanishes in the ®rst domain, the term F1 can be estimated:

F1R
�nmin

0

H�n�o
n2 � o2

dnRH�nmin �arctan�nmin =omin �: �43�

As we see, the contribution F1 can be made arbitrarily small if the bottom limit nmin of the relaxation
frequency domain is chosen so that the inequality nmin<<omin is satis®ed. In the third domain of
integration we have vH(n )ÿHlin(n )v RH(1) and obtain

F3R
�1

nmax

j H�n� ÿHlin�n� j o
n2 � o2

dnRH�1��1ÿ arctan�nmax =omax ��, �44�

which tends to zero in the case of nmax>>omax. In order to evaluate F2 let us consider the estimation o/
(n 2+o 2) R 1/o and split the integral domain between the limits between nmin and nmax into Nÿ 1 parts.
In addition, we take the estimation vH(n )ÿHlin(n )v R H(nk + 1)ÿH(nk) R M(nk + 1ÿnk) into account
where M is the maximum of the derivative H '(n ) in the relaxation frequency domain nmin R n R nmax:

F2R
1

o

�nmax

nmin

j H�n� ÿHlin�n� j dnR 1

o

XNÿ1
k�1

�nk�1

nk
j H�n� ÿHlin�n� j dnRM

o

XNÿ1
k�1
�nk�1 ÿ nk�2: �45�

On the basis of the power law distribution (38) we can ®nd out the di�erences between adjacent
relaxation frequencies

nk�1 ÿ nk � nmin �Zÿ 1�Zkÿ1 with Z �
�nmax

nmin

�1=�Nÿ1�
, �46�

insert them into (45), evaluate the geometric series, consider the estimation (Z+1)r2 and obtain

o
Mn2min

F2R�Zÿ 1�2
XNÿ1
k�1

Z2�kÿ1� � �Zÿ 1�2 Z
2N ÿ 1

Z2 ÿ 1
RZÿ 1

Z� 1
�Z2N ÿ 1�R1

2
�Zÿ 1��Z2N ÿ 1�: �47�

Since the term Z 2Nÿ1 has the top limit (nmax/nmin)
4 we ®nd the ®nal result
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F2R
Mn2min

2omin

�nmax

nmin

�4
 �nmax

nmin

�1=�Nÿ1�
ÿ1
!
� O

�
1

N

�
�48�

which tends asymptotically to zero as O(1/N ), i.e. F2 R K/N for su�ciently large values of N. The most
important outcome of this investigation are the following conditions for the bottom and top limits nmin

and nmax of the relaxation frequency range and the number N of elements:

Smallest relaxation frequency: nmin � omin �49a�

Largest relaxation frequency: nmax � omax �49b�

Number of elements : N� 1� log�nmax � ÿ log�nmin �
log 2

: �49c�

Fig. 3 illustrates the approximation of the cumulative spectrum H(n ) of the substitute model with the
step function series Hlin(n ) speci®ed in (36) and N= 10 elements. The lower and upper limits are given
by nmin=10ÿ3 sÿ1 and nmax=103 sÿ1 so that the conditions (49a,b) are practically satis®ed. The
numerical values of the sti�ness parameters are calculated on the basis of (40). They correspond to the
height of the steps at the locations of the relaxation frequencies nk. The viscosities Zk can be calculated
using (14) and (38).

In order to discuss the accuracy of the dynamic moduli represented let us look at Fig. 4 for
comparison, where the test data as well as two di�erent approximations with N = 4 and N = 10
elements are shown. If the number of elements is to small, we observe pronounced oscillations in the
dissipation modulus G0, a stepped shape of the storage modulus G ', and the quality of data
approximation is quite poor. If the number of elements is su�ciently large, the data approximation is
fairly accurate and the oscillations vanish.

In addition to this, we ought to analyse the quality of approximation of the fractional substitute
model using the linearised ®nite strain model. The dynamic moduli of the substitute model are shown in
Fig. 1 as continuous and dotted curves and the moduli belonging to N=10 elements of the ®nite strain
model as continuous lines in Fig. 4. If we compare the plots, we see that the discrete approximation is
only satisfactory if the condition nmin < o < nmax is satis®ed. It de®nitely deteriorates outside the
speci®ed frequency range.

Fig. 3. Spectrum and cumulative spectrum.
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On the basis of the identi®ed parameters mk and Zk for N=4 and N=10 elements, we may calculate
the stress response in tension of the ®nite deformation model belonging to monotonic strain controlled
processes.

The rate _E � _l=l0 of the engineering strain is constant and varies in ®ve steps between 10ÿ2 sÿ1 and 102

sÿ1. The curves of the engineering stress are plotted in Figs. 5 and 6. Due to the constant rate of the
engineering strain we observe a non-monotonic behaviour, i.e. a decrease in the engineering stress for
large deformations. It can be shown, however, that this is not the case if the logarithmic strain rate l

.
/l(t )

is held constant and the model response of the Cauchy stress is calculated. If we compare the numerical
simulations with N = 4 and N = 10 elements we see that the curvature of the stress response depends
signi®cantly on the number of non-linear Maxwell elements introduced to approximate the continuous
relaxation spectrum. An explanation for the behaviour illustrated here is to be found in the widely
spaced-out relaxation frequencies, i.e. the ratio between them and the duration of the loading process.

The comparison between these predictions and experimental data under large deformations is not
provided in this work because no test data is available. In addition the validation of the ®nite strain
model under two- and three-dimensional states of stress and strain is an interesting research project
which should be investigated in the future.

Fig. 4. Approximations with N=10 and N=4.

Fig. 5. Simulation of tension tests, N=4.
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5. Closure

In this paper we applied a physically based constitutive theory of ®nite viscoelasticity to describe the
dynamic behaviour of polymers in combination with a fairly simple identi®cation technique. It is a well-
known fact that the long-term and short-term properties of polymers under small strains can be
adequately described by the models of linear viscoelasticity with continuous relaxation spectra. The
reason for this is that the characteristic time constants of the relaxation mechanisms of many polymers
are very close together. In these cases there is no risk involved in replacing the discrete relaxation time
distribution by a continuous one.

When representing the material properties by means of a discrete spectrum we have to incorporate a
very large number of material parameters, and the identi®cation process becomes quite complicated. The
above investigation suggests that the number of parameters can be considerably reduced, if a substitute
model of the fractional type is applied. In our opinion other models of linear viscoelasticity can also be
utilised as substitute models. The only requirement is the analytical calculability of the inverse Stieltjes
transformation.

From the point of view of continuum thermomechanics it is easy to extend the concept of discrete
spectra to include the case of ®nite thermomechanical deformations. As we know, each discrete Maxwell
element corresponds, in the case of small deformations, to an additive decomposition of the strain into
an elastic and viscous part. Thus, we have to introduce a set of N multiplicative decompositions of the
deformation gradient, likewise split into elastic and viscous parts, and obtain a set of N intermediate
con®gurations in parallel. Since the constitutive laws of the non-linear Maxwell elements are formulated
taking thermodynamical aspects into consideration and applying the concept of dual variables, the
compatibility with the second law of thermodynamics is satis®ed.

Due to the discrete structure of the ®nite strain theory and the impossibility of expressing the current
values of the internal variables as linear functionals of the deformation history, it would seem to be
impracticable to extend the concept of continuous spectra to ®nite strains without loosing the
thermodynamical consistency. For this reason we have chosen a well-established mathematical method
and an identi®cation technique to approximate a given continuous spectrum by the discrete spectrum of
the ®nite strain model. The idea of this technique is taken from the theory of linear viscoelasticity and is
based on the relation between the relaxation spectrum and the complex modulus, i.e. on the inverse
Stieltjes transformation.

Fig. 6. Simulation of tension tests, N=10.
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